
www.manaraa.com

Computationally Private Information Retrieval

With Polylogarithmic Communication

Christian Cachin∗ Silvio Micali† Markus Stadler‡

August 9, 1999

Abstract

We present a single-database computationally private information retrieval scheme with poly-

logarithmic communication complexity. Our construction is based on a new, but reasonable

intractability assumption, which we call the Φ-Hiding Assumption (ΦHA): essentially the dif-

ficulty of deciding whether a small prime > 2 divides ϕ(m), where m is a composite integer

of unknown factorization. Our result also implies the existence of two-round CS proof systems

under a concrete complexity assumption.

Keywords: Integer factorization, Euler’s function, Φ-hiding assumption, private information

retrieval, computationally sound proofs.

1 Introduction

Private information retrieval. The beautiful notion of private information retrieval (PIR

for short) was introduced by Chor, Goldreich, Kushilevitz and Sudan [CGKS95] and has already

received a lot of attention. The study of PIR is motivated by the growing concern about the user’s

privacy when querying a large commercial database. (The problem was independently studied by

Cooper and Birman [CB95] to implement an anonymous messaging service for mobile users.)

Ideally, the PIR problem consists of devising a communication protocol involving just two

parties, the database and the user, each having a secret input. The database’s secret input is called

the data string, an n-bit string B = b1b2 · · · bn. The user’s secret input is an integer i between 1

and n. The protocol should enable the user to learn bi in a communication-efficient way and at

the same time hide i from the database. (The trivial and inefficient solution is having the database

send the entire string B to the user.)

Information-theoretic PIRs (with database replication). Surprisingly, the original paper

[CGKS95] shows that the PIR problem is solvable efficiently in an information-theoretic setting if

∗ Work done at Laboratory for Computer Science, MIT. Current address: IBM Zurich Research Laboratory,

Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland, cachin@acm.org.
† Laboratory for Computer Science, MIT, Cambridge, MA 02139, USA.
‡ Birchstrasse 135, CH-8050 Zurich, Switzerland, markus.stadler@acm.org.

1

www.manaraa.com

the database does not consist of a single player, but of multiple players, each holding the same

data string B, who can communicate with the user but not with each other (a model reminiscent

of the multi-prover proof systems of [BGKW88]). By saying that this model offers an information-

theoretic solution, we mean that an individual database player cannot learn i at all, no matter how

much computation it may perform, as long as it does not collude with other database players.

Several solutions in this model are presented in the paper of Chor et al. For example, (1) there

are two-database information-theoretic PIRs with O(n1/3) communication complexity, and (2) there

are O(log n)-database information-theoretic PIRs with polylog(n) communication complexity. In

subsequent work, Ambainis gives a construction for k-database information-theoretic PIRs with

O(n1/(2k−1)) communication complexity [Amb97].

Computational PIRs (with database replication). Notice that the latter two information-

theoretic PIRs achieve subpolynomial communication complexity, but require more than a constant

number of database servers. However, in another significant development, Chor and Gilboa [CG97]

show that it is possible to achieve subpolynomial communication complexity with minimal database

replication if one requires only computational privacy of the user input—a theoretically weaker

though practically sufficient notion. They give a two-database PIR scheme with communication

complexity O(nε) for any ε > 0. Their system makes use of a security parameter k and guarantees

that, as long as an individual database performs a polynomial (in k) amount of computation and

does not collude with the other one, it learns nothing about the value i.

Computational PIRs (without database replication). Though possibly viable, the as-

sumption that the database servers are separated and yet mirror the same database contents may

not be too practical. Fortunately, and again surprisingly, Kushilevitz and Ostrovsky [KO97] show

that replication is not needed. Under a well-known number-theoretic assumption, they prove the

existence of a single-database computational PIR with subpolynomial communication. More pre-

cisely, under the quadratic residuosity assumption [GM84], they exhibit a CPIR protocol between a

user and one database with communication complexity O(nε), for any ε > 0, where again n repre-

sents the length of the data string. (For brevity, we refer to such a single-database, computational

PIR, as a CPIR.)

It should be noted that the CPIR of [KO97] has an additional communication complexity that

is polynomial in the security parameter k, but this additional amount of communication is de facto

absorbed in the mentioned O(nε) complexity, because for all practical purposes k can be chosen

quite small.

This result has raised the question of whether it is possible to construct CPIRs with lower

communication complexity.

Main result. We provide a positive answer to the above question based on a new but plausible

number-theoretic assumption: the Φ Assumption, or ΦA for short. The ΦA consists of two parts,

the Φ-Hiding Assumption (ΦHA) and the Φ-Sampling Assumption (ΦSA).

Informally, the ΦHA states that it is computationally intractable to decide whether a given

small prime > 2 divides ϕ(m), where m is a composite integer of unknown factorization. (Recall

that ϕ is Euler’s totient function, and that computing ϕ(m) on input m is as hard as factoring m.)

2

www.manaraa.com

The ΦSA states that it is possible to efficiently find a random composite m such that a given prime

p divides ϕ(m).

The ΦA is attractively simple and concrete. Finding crisp and plausible assumptions is an

important task in the design and analysis of cryptographic protocols, and we believe that the ΦA

will prove useful in other contexts and will attract further study. Based on it we prove the following

Main Theorem: Under the ΦA, there is a two-round CPIR whose communication complexity is

polylogarithmic in n (and polynomial in the security parameter).

We note that our CPIR is “essentially optimal” in several ways:

Communication complexity. Disregarding the privacy of the user input altogether, in order for the

user to obtain the ith bit of an n-bit data string, at least log n bits have to be communicated

between the user and the database in any case.

Computational complexity. Our CPIR is also very efficient from a computational-complexity point

of view. Namely, (1) the user runs in time polylogarithmic in n (and polynomial in k), and

(2) the database runs in time linear in n (and polynomial in k). Both properties are close

to optimal in our context. The user computational complexity is close to optimal because,

as already mentioned, in any scheme achieving sub-linear communication the user must send

at least log n bits of information, and thus perform at least log n steps of computation. The

database computational complexity is close to optimal because the database must read each

bit of its data string in any PIR. (Otherwise, it would know that the user cannot possibly have

received any of the unread bits and therefore gain some information about the user input i.)

Round complexity. The round complexity of our CPIR is essentially optimal because, as long as

the user can choose his own input i at will in each execution, no single-round CPIR exists1.

Privacy model. Our CPIR achieves computational privacy. Although information-theoretic pri-

vacy is stronger, our scheme is optimal among single-database PIRs since there are no single-

database PIRs with information-theoretic privacy (other than sending the entire data string).

Applications. Our result provides the first two-round implementation of computationally sound

proofs [Mic94] under a concrete complexity assumption. One-round implementations of CS proofs

were previously shown to exist assuming a random oracle (far from a concrete assumption), and

three-round implementations were known assuming the existence of collision-resistant hash func-

tions. The details will be given in the full version of the paper.

Combined with the techniques developed by Gertner et al. [GIKM98], our CIR achieves the first

two-database implementation of symmetrically private information retrieval (SPIR) with polylog-

arithmic communication complexity. A SPIR scheme guarantees that not only the privacy of the

user is protected but also the privacy of the data, that is, the user learns only bi and no other

information about bj for j ̸= i.

1We do not rule out the possibility of single-round CPIRs in alternative models, for example, in a model where

the user always learns the bit in position i in any execution in which the data string has at least i bits.

3

www.manaraa.com

2 Preliminaries and Definitions

2.1 Notation

Integers. We denote by NI the set of natural numbers. Unless otherwise specified, a natural

number is presented in its binary expansion whenever given as an input to an algorithm. If n ∈ NI ,

by 1n we denote the unary expansion of n, that is, the concatenation of n 1’s. If a, b ∈ NI , we

denote that a evenly divides b by writing a|b. Let ZZm be the ring of integers modulo m and ZZ∗
m

its multiplicative group. The Euler totient function of an integer m, denoted by ϕ(m), is defined

as the number of positive integers ≤ m that are relatively prime to m.

Strings. If σ and τ are binary strings, we denote σ’s length by |σ|, σ’s ith bit by σi, and the

concatenation of σ and τ by σ ◦ τ .

Computation models. By an algorithm we mean a (probabilistic) Turing machine. By saying

that an algorithm is efficient we mean that, for at most but an exponentially small fraction of

its random tapes, it runs in fixed polynomial time. By a k-gate circuit we mean a finite function

computable by an acyclic circuitry k Boolean gates, where each gate is either a NOT-gate (with

one input and one output) or an AND gate (with two binary inputs and one binary output).

Probability spaces. (Taken from [BDMP91] and [GMR88].) If A(·) is an algorithm, then for

any input x, the notation “A(x)” refers to the probability space that assigns to the string σ the

probability that A, on input x, outputs σ.

If S is a probability space, then “x
R← S” denotes the algorithm which assigns to x an element

randomly selected according to S. If F is a finite set, then the notation “x
R← F” denotes the

algorithm which assigns to x an element selected according to the probability space whose sample

space is F and uniform probability distribution on the sample points.

If p(·, ·, · · ·) is a predicate, the notation PROB [x
R← S; y

R← T ; · · · : p(x, y, · · ·)] denotes the

probability that p(x, y, · · ·) will be true after the ordered execution of the algorithms x
R← S, y

R←
T, · · · .

2.2 Fully Polylogarithmic CPIR

Our proposed CPIR works in only two rounds and achieves both polylogarithmic communication

complexity and polylogarithmic user computational complexity. For the sake of simplicity, we

formalize only such types of CPIRs below.

Definition: Let D(·, ·, ·), Q(·, ·, ·) and R(·, ·, ·, ·, ·) be efficient algorithms. We say that (D,Q,R) is

a fully polylogarithmic computationally private information retrieval scheme (or polylog CPIR for

short) if there exist constants a, b, c, d > 0 such that,

1. (Correctness) ∀n, ∀ n-bit strings B, ∀i ∈ [1, n], and ∀k,

PROB [(q, s)
R← Q(n, i, 1k) ; r

R← D(B, q, 1k) : R(n, i, (q, s), r, 1k) = Bi] > 1− 2−ak

4

www.manaraa.com

2. (Privacy) ∀n, ∀i, j ∈ [1, n], ∀k such that 2k > nb, and ∀ 2ck-gate circuits A,∣∣PROB [(q, s)
R← Q(n, i, 1k) : A(n, q, 1k) = 1] −

PROB [(q, s)
R← Q(n, j, 1k) : A(n, q, 1k) = 1]

∣∣ < 2−dk.

We call a, b, c, and d the fundamental constants (of the CPIR); B the data string ; D the database

algorithm; the pair (Q,R) the user algorithm; Q the query generator ; R the response retriever ; q

the query ; s the secret (associated to q); r the response; and k the security parameter. (Intuitively,

query q contains user input i, and response r contains database bit bi, but both contents are

unintelligible without secret s.)

Remarks.

1. Our correctness constraint slightly generalizes the one of [KO97]: Whereas there correctness

is required to hold with probability 1, we require it to hold with very high probability.

2. As mentioned above, the communication complexity of our CPIR is polylogarithmic in n

(the length of the data string) and polynomial in k (the security parameter). Because k is

an independent parameter, it is of course possible to choose it so large that the polynomial

dependence on k dominates over the polylogarithmic dependence on n. But choosing k is an

overkill since our definition guarantees “an exponential amount of privacy” also when k is

only polylogarithmic in n.

2.3 Number Theory

Some useful sets. Let us define the sets we need in our assumptions and constructions.

Definition: We denote by PRIMESa the set of the primes of length a, and by Ha the set of the

composite integers that are product of two primes of length a. (For a large, Ha contains the hardest

inputs to any known factoring algorithm.)

We say that a composite integer m ϕ-hides a prime p if p|ϕ(m). Denote by Hb(m) the set of

b-bit primes p that are ϕ-hidden by m, denote by H̄b(m) the set PRIMES b −Hb(m), and denote

by Hb
a the set of those m ∈ Ha (i.e., products of two k-bit primes) that ϕ-hide a b-bit prime.

Some useful facts. Let us state without proof some basic or well-known number-theoretic facts

used in constructing our CPIR.

Fact 1: There exists an efficient algorithm that on input a outputs a random prime in PRIMESa.

Fact 2: There exists an efficient algorithm that on input a outputs a random element of Ha.

Fact 3: There exists an efficient algorithm that, on input a b-bit prime p and an integer m

together with its integer factorization, outputs whether or not p ∈ Hb(m).

Fact 4: There exists an efficient algorithm that, on inputs x, p, m, and m’s integer factorization,

outputs whether or not x has a pth root mod m.

5

www.manaraa.com

Our assumptions.

The Φ-Assumption (ΦA):

∃e, f, g, h > 0 such that

• Φ-Hiding Assumption (ΦHA): ∀k > h and ∀ 2ek-gate circuits C,

PROB [m
R← Hk

kf ; p0
R← Hk(m) ; p1

R← H̄k(m) ; b
R← {0, 1} : C(m, pb) = b] <

1

2
+ 2−gk.

• Φ-Sampling Assumption (ΦSA): ∀k > h, there exists a sampling algorithm S(·) such

that for all k-bit primes p, S(p) outputs a random kf -bit number m ∈ Hk
kf

that ϕ-hides

p, together with m’s integer factorization.

We refer to e, f, g, and h as the first, second, third, and fourth fundamental constant of the ΦA,

respectively.

Remarks.

1. Revealing a large prime dividing ϕ(n) may compromise n’s factorization. Namely, if p is a

prime > n1/4 and p|ϕ(n), then one can efficiently factor n on inputs n and p [Cop98, Cop96b,

Cop96a]. Consequently, it is easy to decide whether p divides ϕ(n) whenever p > n1/4. But

nothing similar is known when p is much smaller, and for the ΦHA, it suffices that deciding

whether p divides ϕ(n) is hard when p is not just a constant fraction shorter than n, but

polynomially shorter.

We further note that if the complexity of factoring is Ω(2logn
c
) for some constant c between 0

and 1, then revealing a prime p dividing ϕ(n) cannot possibly compromise n’s factorization

significantly if log p is significantly smaller than (log n)c. Indeed, since p can be represented

using at most log p bits, revealing p cannot contribute more than a speed-up of 2⌈log p⌉ ≈ p

for factoring n.

2. The ΦSA is weaker than the well-known and widely accepted Extended Riemann Hypothesis

(ERH). Consider the following algorithm S(·):

Inputs: a k-bit prime p.

Output: a kf -bit integer m ∈ Hk
kf

that ϕ-hides p and its integer factorization.

Code for S(p):

(a) Repeatedly choose a random (kf − k)-bit integer q1 until Q1 = piq1 + 1 is a prime.

(b) Choose a random kf -bit prime Q2.

(c) Let m← Q1 ·Q2 and return m and (Q1, Q2).

Under the ERH, algorithm S finds a suitable m in expected polynomial time in kf (see

Exercise 30 in Chapter 8 of [BS96]).

6

www.manaraa.com

3 Our CPIR

3.1 The High-Level Design

At a very high level, the user’s query consists of a compact program that contains the user input i in

a hidden way. The database runs this program on its data string, and the result of this computation

is its response r.

A bit more specifically, this compact program is actually run on the data string in a bit-by-bit

fashion. Letting B be the data string, the user sends the database an algorithm A and a k-bit

value x0 (where k is the security parameter), and the database computes a sequence of k-bit values:

x1 = A(x0, B1), x2 = A(x1, B2), . . . , xn = A(xn−1, Bn). The last value xn is the response r. The

user retrieves Bi by evaluating on xn a predicate Ri, which is hard to guess without the secret key

of the user.

This high-level design works essentially because the predicate Ri further enjoys the following

properties relative to the sequence of values x0, . . . , xn:

1. Ri(x0) = 0;

2. ∀j = 1, . . . , i− 1, Ri(xj) = 0;

3. Ri(xi) = 1 if and only if Bi = 1; and

4. ∀j > i, Ri(xj+1) = 1 if and only if Ri(xj) = 1.

It follows by induction that Ri(xn) = 1 if and only if Bi = 1.

3.2 The Implementation

To specify our polylog CPIR we must give a database algorithm D and user algorithms Q (query

generator) and R (response retriever). These algorithms use two common efficient subroutines T

and P that we describe first. Algorithm T could be any probabilistic primality test [SS77, Rab81],

but we let it be a primality prover [GK86, AH87] so as to gain some advantage in the notation and

presentation (at the expense of running time).

Basic inputs.

A number n ∈ NI ; an n-bit sequence B; an integer i ∈ [1, n]; and a unary security parameter 1k

such that k > (log n)2.

Primality prover T (·).
Input: an integer z (in binary).

Output: 1 if z is prime, and 0 if z is composite.

Code for T (z): See [AH87].

Prime(-Sequence) generator P (·, ·, ·).
Inputs: an integer a ∈ [1, n]; a sequence of k3 k-bit strings Y = (y0, . . . , yk3−1); and 1k.

7

www.manaraa.com

Output: a k-bit integer pa (a prime with overwhelming probability).

Because P is deterministic, for Y and k fixed, it generates a sequence of (probable) primes

p1, . . . , pn with a = 1, . . . , n.

Code for P (a, Y, 1k):

1. j ← 0.

2. σaj ← ā ◦ j̄, where ā is the (log n)-bit representation of a and j̄ the (k − log n)-bit

representation of j.

3. zj ←
∑k3−1

l=0 ylσaj
l, where all strings yl and σaj are interpreted as elements of GF (2k)

and the operations are in GF (2k).

4. If T (zj) = 1 or j = 2k−logn, then return pa ← zj and halt; else, j ← j + 1 and go to

step 2.

Query generator Q(·, ·, ·).
Inputs: n; an integer i ∈ [1, n]; and 1k.

Outputs: a query q = (m,x, Y) and a secret s, where m is a kf -bit composite (f being the second

constant of the ΦA), x ∈ ZZ∗
m, Y a k3-long sequence of k-bit strings, and where s consists of

m’s prime factorization.

Code for Q(n, i, 1k):

1. Randomly and independently choose y0, . . . , yk3−1 ∈ {0, 1}k and let Y = (y0, . . . , yk3−1).

2. pi ← P (i, Y, 1k).

3. Choose a random kf -bit integer m that ϕ-hides pi = P (i, Y, 1k) and let s be its integer

factorization.

4. Choose a random x ∈ ZZ∗
m.

5. Output the query q = (m,x, Y) and the secret s.

Database algorithm D(·, ·, ·).
Inputs: B; q = (m,x, Y), a query output by Q(n, i, 1k); and 1k.

Output: r ∈ ZZ∗
m.

Code for D(B, q, 1k):

1. x0 ← x.

2. For j = 1, . . . , n, compute:

(a) pj ← P (j, Y, 1k).

(b) ej ← p
bj
j .

(c) xj ← x
ej
j−1 mod m.

3. Output the response r = xn.

Response retriever R(·, ·, ·, ·, ·):
Inputs: n; i; (m,x, Y), s), an output of Q(n, i, 1k); r ∈ ZZ∗

m, an output of D(B, (m,x, Y), 1k);

and 1k.

Output: a bit b. (With overwhelming probability, b = Bi.)

Code for R(n, i, (q, s), r, 1k): If r has pith roots mod m, then output 1, else output 0.

Theorem: Under the ΦA, (D,Q,R) is a polylog CPIR.

8

www.manaraa.com

3.3 Proof of the Theorem

Running time (sketch). Subroutine P is efficient because (on inputs i, Y , and 1k) its most

intensive operation consists, for at most k3 times, of evaluating once a k-degree polynomial over

GF (2k) and running the primality prover T . Algorithm Q is efficient because subroutines P and

T are efficient, because pi is a k-bit prime with overwhelming probability, and because, under the

ΦSA, selecting a random 2kf -bit composite ∈ Hk
kf

ϕ-hiding pi is efficient. (Notice that, because

n and i are presented in binary, Q actually runs in time polylogarithmic in n.) Algorithm D is

efficient because it performs essentially one exponentiation mod m for each bit of the data string

(and thus runs in time polynomial in k and linear in n). Algorithm R is efficient because of Fact 4

and because it has m’s factorization (the secret s) available as an input. (R actually runs in time

polynomial in k because m’s length is polynomial in k.)

Correctness (sketch). Let us start with a quick and dirty analysis of the prime-sequence gener-

ator P . Because the elements of Y are randomly and independently selected, in every execution of

P (a, n, 1k), the k-bit values z0, . . . , z2k−logn are k3-wise independent. Thus with probability lower

bounded by 1 − 2O(−k2), at least one of them is prime, and thus pa is prime. Because the length

n of the data string satisfies n2 < 2k, with probability exponentially (in k) close to 1, all possible

outputs p1, . . . , pn are primes. Actually, with probability exponentially (in k) close to 1, p1, . . . , pn
consists of random and distinct primes of length k. Observe that the kf -bit modulus m can ϕ-hide

at most a constant number of primes from a set of randomly chosen k-bit primes except with ex-

ponentially (in k) small probability. Thus, with probability still exponentially (in k) close to 1, pi
will be the only prime in our sequence to divide ϕ(m).

In sum, because it suffices for correctness to hold with exponentially (in k) high probability, we

might as well assume that, in every execution of Q(n, i, 1k), p1, . . . , pn are indeed random, distinct

primes of length k, such that only pi divides ϕ(m). Let Ri be the following predicate on ZZ∗
m:

Ri(x) =

{
1 if x has a pith root mod m

0 otherwise.

The user retrieves bi by evaluating Ri(xn). It is easy to check that properties 1–4 of our high-level

design hold as promised:

1. Ri(x0) = 0.

This property follows from the fact that the function x→ xpj mod m on ZZ∗
m is 1-to-1 if pj is

relatively prime to ϕ(m), and at least pj-to-1 otherwise. Because pi is in Θ(2k) except with

exponentially (in k) small probability, the probability that a random element of ZZ∗
m has a

pith root mod m is also exponentially small (in k). Thus we might as well assume that x0
has no pith roots mod m (remember that correctness should hold only most of the time).2

2. ∀j = 1, . . . , i− 1, Ri(xj) = 0.

This follows because x0 has no pith roots mod m and because if x has no pith roots mod

m, for all primes p not dividing ϕ(m) also xp has no pith roots mod m. Again because of

2We choose x0 at random rather than ensuring that it has no pith roots mod m to facilitate proving the privacy

constraint.

9

www.manaraa.com

the size of the primes pj for j ̸= i, one can show that except with exponentially small (in k)

probability, none of the pj divides ϕ(m).

3. Ri(xi) = 1 if and only if Bi = 1.

If Bi = 0, then xi = xi−1. Thus, by property 2 above, xi has no pith roots mod m. If Bi = 1,

then xi = xpii−1 mod m. Thus, xi has pith roots mod m by construction.

4. ∀j > i, Ri(xj+1) = 1 if and only if Ri(xj) = 1.

The “if part” follows from the fact that if xj has pith roots mod m, then there exists a y such

that xj = ypi mod m and therefore also xj+1 = x
pj
j = ypipj = (ypj)pi mod m has pith roots.

For the “only-if part,” see the proof of property 2 above.

Privacy (sketch). Suppose for contradiction that the privacy condition does not hold for

(D,Q,R). Then for all b, c, d > 0, there exist n, indices i, j, k > log nb, and a 2bk-gate circuit Ã

(with binary output) such that

|α1 − α2| ≥ ε

for some ε > 2−dk, where

α1 = PROB
[
((m,x, Y), s)

R← Q(n, i, 1k) : Ã(n, (m,x, Y), 1k) = 1
]
,

α2 = PROB
[
((m,x, Y), s)

R← Q(n, j, 1k) : Ã(n, (m,x, Y), 1k) = 1
]
.

(Intuitively, Ã’s advantage ε is always bigger than any exponentially small in k quantity.) Define

now the following probability:

β = PROB
[
m

R← Hk
kf ; x

R← ZZ∗
m ; Y

R← GF (2k)k
3
: Ã(n, (m,x, Y), 1k) = 1

]
.

(Notice that, in the sequence of experiments defining β, Y still defines a prime pi and a prime pj
with overwhelming probability, but there is no guarantee that m ϕ-hides either of them.) It follows

either |α1 − β| ≥ ε/2 or |α2 − β| ≥ ε/2. W.l.o.g. assume |α1 − β| ≥ ε/2 and also α1 − β ≥ ε/2.

We can construct a guessing circuit C̃ = C̃n,i to contradict the ΦHA as follows.

Guessing circuit C̃n,i(·, ·).
Inputs: a number m ∈ Hk

kf
; and a k-bit prime p.

Output: a bit b (indicating whether m ϕ-hides p).

Code for C̃n,i(m, p):

1. Choose k3 uniformly random k-bit numbers a1, . . . , ak3 .

2. Run primality prover T on aj for j = 1, . . . , k3 and let j′ be the smallest j for which

T (aj) = 1. If T returns 0 for all aj , then j′ ← k3.

3. Use Lagrange interpolation to find the coefficients y0, . . . , yk3−1 of a polynomial ξ(σ)

over GF (2k) with degree k3 − 1 such that ξ(σij) = aj for j = 1, . . . , j′ − 1, j′ + 1, . . . , k3

and ξ(σij′) = p, where σij ∈ GF (2k) corresponds to the k-bit string i ◦ j as in the

prime-sequence generator P . Let Y = (y0, . . . , yk3−1).

10

www.manaraa.com

4. Choose x at random from ZZ∗
m and run Ã(n, (m,x, Y), 1k). If Ã returns 0, then return 1,

otherwise (if Ã returns 1), then return 0.

Notice that C̃ can be constructed with a number of gates that is at most polynomially (in k) greater

than the number of gates of Ã.

Above we have defined how C̃ operates for any m ∈ Hk
kf

and any p ∈ PRIMESk. Let us

now analyze C̃’s behavior on the input distribution required by the ΦHA (i.e., when m
R← Hk

kf

and p
R← Hk(m) with probability 1/2 and p

R← H̄k(m) with probability 1/2) and calculate the

probability that C̃ guesses correctly from which distribution p is drawn.

PROB [C̃ correct] =
1

2
· PROB [C̃ correct|p R← Hk(m)] +

1

2
· PROB [C̃ correct|p R← H̄k(m)]

=
1

2
· PROB [C̃ = 0|p R← Hk(m)] +

1

2
· PROB [C̃ = 1|p R← H̄k(m)].

The distribution of the output of C̃ depends directly on Ã. If p
R← Hk(m), then, by construction,

Ã is run with the same input distribution as in the definition of α1, except for the case that C̃

finds no prime among a1, . . . , ak3 in step 2 (assume this is not the case for the moment). Let us

examine Ã’s input distribution in C̃ when p
R← H̄k(m) and compare it to Ã’s input distribution in

the definition of β. The experiment leading to β contains three distinct cases for pi = P (i, Y, 1k):

1. pi is composite;

2. pi ∈ Hk(m); or

3. pi ∈ H̄k(m).

Note that case 3 is actually how Ã is called by our C̃ in the ΦHA and occurs with overwhelming

probability. Let δ0 be the probability of case 1, which will be computed below, and assume for

the moment that pi is indeed a random k-bit prime. The probability δ1 that a random element of

PRIMESk is in Hk(m) is upper bounded by kf2−k = O(2−k/2). (This is the conditional probability

of case 2 above given that pi is prime.) For C̃, this implies

PROB [C̃ = 1|p R← PRIMESk] ≤ PROB [C̃ = 1|p R← H̄k(m)] + δ1.

Now consider the case that no prime is detected among a1, . . . , ak3 in step 2. Because T is an ideal

primality prover, this probability is at most about (1− 1
k)

k3 and therefore δ0 = O(2−k/2).

We can now bound PROB [C̃ correct] as

PROB [C̃ correct]

≥ 1

2
· (1− δ0) · PROB [C̃ = 0|p R← Hk(m)] +

1

2
· (1− δ0) ·

(
PROB [C̃ = 1|p R← PRIMESk]− δ1

)
≥ 1

2
· (1− δ0) · α1 +

1

2
· (1− δ0) · (1− β − δ1)

≥ 1

2
·
(
1 + α1 − δ0 − β − δ0 − δ1

)
≥ 1

2
+

ε

4
− δ0 −

δ1
2
.

11

www.manaraa.com

The last inequality follows from the assumption α1 − β ≥ ε/2.

To conclude, C̃ distinguishes correctly with probability at least

1

2
+

ε

4
− δ0 −

δ1
2
.

Intuitively, since δ1 and δ0 are exponentially small in k, but ε exceeds any exponentially small

quantity, there remains an advantage for C̃ that is not exponentially small and it is clear that C̃

violates the ΦHA.

References

[AH87] L. M. Adleman and M. A. Huang, Recognizing primes in random polynomial time, Proc.

19th Annual ACM Symposium on Theory of Computing (STOC), 1987, pp. 462–469.

[Amb97] A. Ambainis, Upper bound on the communication complexity of private information

retrieval, Proc. 24th ICALP, Lecture Notes in Computer Science, vol. 1256, Springer,

1997.

[BDMP91] M. Blum, A. De Santis, S. Micali, and G. Persiano, Noninteractive zero-knowledge,

SIAM Journal on Computing 20 (1991), no. 6, 1085–1118.

[BGKW88] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson, Multi prover interactive proofs:

How to remove intractability, Proc. 20th Annual ACM Symposium on Theory of Com-

puting (STOC), 1988, pp. 113–131.

[BS96] E. Bach and J. Shallit, Algorithmic number theory, vol. 1: Efficient Algorithms, MIT

Press, Cambridge, 1996.

[CB95] D. A. Cooper and K. P. Birman, Preserving privacy in a network of mobile computers,

Proc. IEEE Symposium on Security and Privacy, 1995, pp. 26–38.

[CG97] B. Chor and N. Gilboa, Computationally private information retrieval, Proc. 29th

Annual ACM Symposium on Theory of Computing (STOC), 1997, pp. 304–313.

[CGKS95] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, Private information retrieval,

Proc. 36th IEEE Symposium on Foundations of Computer Science (FOCS), 1995.

[Cop96a] D. Coppersmith, Finding a small root of a bivariate integer equation; factoring with

high bits known, Advances in Cryptology: EUROCRYPT ’96 (U. Maurer, ed.), Lecture

Notes in Computer Science, vol. 1233, Springer, 1996.

[Cop96b] D. Coppersmith, Finding a small root of a univariate modular equation, Advances in

Cryptology: EUROCRYPT ’96 (U. Maurer, ed.), Lecture Notes in Computer Science,

vol. 1233, Springer, 1996.

[Cop98] D. Coppersmith, personal communication, 1998.

12

www.manaraa.com

[GIKM98] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin, Protecting data privacy in pri-

vate information retrieval schemes, Proc. 30th Annual ACM Symposium on Theory of

Computing (STOC), 1998.

[GK86] S. Goldwasser and J. Kilian, Almost all primes can be quickly certified, Proc. 18th

Annual ACM Symposium on Theory of Computing (STOC), 1986, pp. 316–329.

[GM84] S. Goldwasser and S. Micali, Probabilistic encryption, Journal of Computer and System

Sciences 28 (1984), 270–299.

[GMR88] S. Goldwasser, S. Micali, and R. L. Rivest, A digital signature scheme secure against

adaptive chosen-message attacks, SIAM Journal on Computing 17 (1988), no. 2, 281–

308.

[KO97] E. Kushilevitz and R. Ostrovsky, Replication is not needed: Single database,

computationally-private information retrieval, Proc. 38th IEEE Symposium on Foun-

dations of Computer Science (FOCS), 1997, pp. 364–373.

[Mic94] S. Micali, CS proofs, Proc. 35th IEEE Symposium on Foundations of Computer Science

(FOCS), 1994.

[Rab81] M. O. Rabin, How to exchange secrets by oblivious transfer, Tech. Report TR-81,

Harvard, 1981.

[SS77] R. Solovay and V. Strassen, A fast monte-carlo test for primality, SIAM Journal on

Computing 6 (1977), no. 1, 84–85.

13

